Thursday, July 14, 2011

Translation Services Cleveland OHIO

Machine Translation
The idea of machine translation may be traced back to the 17th century. In 1629, René Descartes proposed a universal language, with equivalent ideas in different tongues sharing one symbol. In the 1950s, The Georgetown experiment (1954) involved fully automatictranslation of over sixty Russiansentences into English. The experiment was a great success and ushered in an era of substantial funding for machine-translation research. The authors claimed that within three to five years, machine translation would be a solved problem.
Real progress was much slower, however, and after the ALPAC report (1966), which found that the ten-year-long research had failed to fulfill expectations, funding was greatly reduced. Beginning in the late 1980s, as computational power increased and became less expensive, more interest was shown in statistical models for machine translation.
The idea of using digital computers for translation of natural languages was proposed as early as 1946 by A. D. Booth and possibly others. Warren Weaver wrote an important memorandum “Translation” in 1949. The Georgetown experiment was by no means the first such application, and a demonstration was made in 1954 on the APEXC machine at Birkbeck College (University of London) of a rudimentary translation of English into French. Several papers on the topic were published at the time, and even articles in popular journals (see for example Wireless World, Sept. 1955, Cleave and Zacharov). A similar application, also pioneered at Birkbeck College at the time, was reading and composing Braille texts by computer.

The human translation process may be described as:

  1. Decoding the meaning of the source text; and
  2. Re-encoding this meaning in the target language.
Behind this ostensibly simple procedure lies a complex cognitive operation. To decode the meaning of the source text in its entirety, the translator must interpret and analyse all the features of the text, a process that requires in-depth knowledge of the grammar, semantics, syntax, idioms, etc., of the source language, as well as the culture of its speakers. The translator needs the same in-depth knowledge to re-encode the meaning in the target language.
Therein lies the challenge in machine translation: how to program a computer that will “understand” a text as a person does, and that will “create” a new text in the target language that “sounds” as if it has been written by a person.
This problem may be approached in a number of ways.

No comments:

Post a Comment